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PREFACE

This investigation was conducted by the U. S. Army Engineer Water-
ways Experiment Station (WES) for the Office, Chief of Engineers, as
1 part of CWIS Work Unit 31150, "Remote Delineation of Cavities and
Discontinuities in Rock."

Many individuals contributed to this investigation, including
Messrs. J. R. Curro, Jr., D. M. Kronig, E. S. Stewart, D. H. Douglas,
and D. K. Butler, and Dr. A. G, Franklin of the Earthquake Engineering
and Geophysics Division (EE&GD), Geotechnical Laboratory (GL);

Messrs, W. L. Murphy, J. B. Warriner, R. F. Anderson, and D. Taylor of
the Engineering Geology and Rock Mechanies Division, GL, WES; Mr. P. J.
Tarantolo and Dr. R. R. Unterberger, Department of Geophysics, Texas

A&M University; and Mr. R. C. Benson, Technos, Inc. The work was per-

formed intermittently during the period June 1975 to October 1978. This

report was written by Messrs. Butler and’Murphy and documents the ini-
tial efforts conducted under Work Unit 31150.

The work was performed under the general supervision of Mr. R. F.
Ballard, Jr., Chief, Field Investigations Group, EE&GD; Drs. F. G.
McLean and P. F. Hadala, former Chief and Chief, respectively, EE&GD;
and Mr. James P. Sale, Chief, GL.

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were
Commanders and Directors of the WES during the conduct of this investi-

gation., Mr. Fred R. Brown was Technical Director.
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS AND METRIC (SI) TO U. S. CUSTOMARY

Units of measurement used in this report can be converted as follows:

Multiply

degrees (angle)
feet

feet per second
inches

miles per hour
(U. S. statute)

ohm-feet

centimetres
metres
metres per second

ohm-centimetres

UNITS OF MEASUREMENT

— B

U. S. Customary to Metric (SI)

0.01745329
0.3048
0.3048
2.5h4
1.609344

0.003048

Metric (SI) to U. S. Customary

0.3937007

3.280839

3.280839
328.0839

To Obtain

radians

metres

metres per second
centimetres

kilometres per hour

ohm-centimetres

inches

feet

feet per second
ohm-feet
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EVALUATION OF GEOPHYSICAL METHODS FOR CAVITY
DETECTION AT THE WES CAVITY TEST FACILITY

PART I: INTRODUCTION

Background

1. Subsurface cavities are a problem frequently encountered prior
to, during, and after construction in many areas of the country with
solution-susceptible bedrock (limestones, dolomites, and evaporites
primarily). Such cavities can threaten the safety of structures of all
types by impairing the bearing capacity of the foundation, and in the
case of water-retention structures such as earth dams, the cavities
can lead to piping failure of the dam if not properly treated. Of
lesser, but still serious, importance is the fact that such cavities
can lead to economically intolerable water losses from reservoirs. If
detected during the site investigation phase, either the site can be
relocated or the construction plan altered to deal with the problem.
However, if cavities are detected during construction, the option to
relocate the site is frequently not viable, and the increase in cost
required by changing the construction plan at this stage can be very
large. For cavities that are discovered after construction, the reme-
dial options may be few, and the consequences of undiscovered or
untreated cavities at a water-retention project can range from unac-
ceptable water loss to a life-endangering failure caused by loss of
bearing capacity or piping of earth materials covering cavity exits
or entrances. Thus, it is preferable to detect and delineate cavities
early in the site investigation phase. Though it will almost cer-
tainly be impossible to detect every cavity in the site investigation
phase, it is desirable to gain enough information to make reasonable
evaluations of the extent of the problem at a given site and make
reasonable estimates of the cost of dealing with it.

2. Although there frequently are surface indicators of subsurface
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cavities, such as depressions, lineations, anomalous vegetative stress,
etc., detection and delineation of cavity systems (if found at all prior
to construction) require geophysical surveying and drilling. Of course,
drilling is required in any event to verify geophysical indications,
although to achieve the same degree of site definition, the combined
program is far less costly than drilling alone (Headquarters, Department
of the Army 1978). Even if one anticipates reasonable advances in tech-
nology, geophysical methods, and for that matter drilling, do not hold
the possibility of discovering every cavity that might hold the poten-
tial for causing piping. This situation must be dealt with through the
use of defensive design measures. However, even in this area, the
partial information obtained can be used to guide decisions regarding
the type and degree of redundancy needed in these measures.

3. One problem with previous trials of geophysical methods for
cavity detection has been that field programs were not designed for the
detection of relatively small, localized structures. Another is that
there has not been sufficent evaluation of the signatures produced by
geophysical tools when used in the vicinity of cavities of known size
and location. Thus, the manner in which the presence of cavities would
be revealed in the data has not been known or at least appreciated for

many of the methods.

Purpose

L. The purposes of the investigation reported herein were (a) to
plan and construct a controlled Cavity Test Facility for use in pre-
liminary evaluation of geophysical methods as cavity location or deline-
ation tools and (b) to evaluate several geophysical techniques to
determine whether signatures could be obtained that would help to either
locate a cavity or, once located, to determine its size, depth, or

shape in plan view (i.e., to delineate it).




Scope

S. As part of this investigation, a Cavity Test Facility was
designed and constructed at the U. S. Army Engineer Waterways Experiment
Station (WES) and used for the evaluation of several existing geo-
physical methods. Site conditions in the vicinity were documented and
the following geophysical test methods were used to survey the area:

-

a. Seismic studies
(1) Surface refraction surveys
(2) Surface reflection surveys
(3) Wave-front surveys
(4) Crosshole surveys

(5) Sonar investigation

b. Resistivity studies
(1) Wenner profiling
(2) Schlumberger sounding
(3) Bristow-Bates surveys (pole-dipole)
' {4) Dipole-dipole surveys
(5) Subsurface resistivity logging
¢. Radar studies

(1) Continuous wave-frequency modulation (CW-FM) profiling
(2) Pulse profiling
Results of these surveys were analyzed to determine if trends or

anomalies in the data could be correlated to cavity location and size.

(o)}
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PART II: WES CAVITY TEST FACILITY

General Description

6. The criteria guiding the planning for the facility were that
{(a) the site should be easily accessible, (b) the cavities should simu-
late voids in an otherwise relatively homogeneous medium, and (c) the
facility should provide a realistic range of cavity sizes and depths.
Item (a) dictated that the facility be located at or near WES despite
the fact that no solution-susceptible formations exist in the area. An
isolated location at WES was selected for the Cavity Test Facility (see
Figure 1). Soil at the location is the loess that is typical of the
Vicksburg area. The stratigraphy of the area is varied, but the gen-
eral succession from the surface downward is loess, Pleistocene sands
and gravels, terrace deposits (mixed clays and silts), Bucatunna forma-
tion, Byram Marl, and Glendon limestone. In some places, the Pleistocene
sands and gravels are missing. The loess varies considerably in thick-
ness, depending on the topography, but typically is about 15 m¥* thick.
The depth to the water table in the area is greater than 9 m.

7. Figures 2 and 3 show a plan and a north-south section view of
the facility illustrating the general geometry of the four cavity sites.

The specific characteristics of the four sites are tabulated below:

Geometry

Site (Horizontal Cylinders) Depth to Top

I 1.22 m diam, 6.1 m long 6.1m

ITA 0.3 m diam, 0.3 m long 3.0m

IIB 0.6 m diam, 0.6 m long 6.1 m
IITA 0.3 m diam, 6.1 m long 3.0m
IIIB 0.6 m diam, 6.1 m long 6.1 m

v 1.22 m diam, 1.22 m long 6.1 m

* A table for converting U. S. customary to metric (SI) units and
metric (SI) to U. S. customary units is found on page 3.




It was felt that this arrangement would allow opportunity to evaluate
size, shape, and depth discrimination with the geophysical methods as
. well as vertical discrimination and resclution. The sizes and depths
were also considered appropriate and realistic simulations of commonly

encountered field conditions.

E Construction Details

t 8. TFigure 4 illustrates the instructions given to the construction
F forces for the excavation of the site. All four excavations were to
have l-on-l slopes in the east-west direction and l-on-2 to l-on-3
slopes in the north-south direction. Figures 5 and 6 are photographs

of the construction in progress for Cavity Site I. They indicate that
the instructions as to slope were not closely adhered to by the con-
struction forces.

9. The cavities were formed by emplacing closed-end polyvinyl
chloride (PVC) pipes of varying lengths and diameters in excavations,
which were then backfilled. Fill material was compacted around and
immediately above the PVC pipes. The remainder of the fill, however,
was placed without compacting, and the test sites were leveled.

10. A grid pattern of nominal 0.l2-m-diam by 9-m-deep boreholes

was drilled (augered) at the facility for use during subsequent investi-
gations (open circles in Figure 2). Also, vertical plastic pipes were

connected to the cavities to allow them to be filled with water.

Subsurface Investigations

11. 1In addition to the grid pattern of boreholes discussed pre-
viously, three boreholes were drilled to depths of about 18 m at Cavity
Site I at locations shown in Figure 7 after completion of construction.
Soil samples were taken for visual classification and density and water
content determinations, to support any analysis that might be desired

in the geophysical investigations. Results are shown in Figures 8
and 9.

i
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12, As indicated in Figure 8, water was encountered in Boring
No. 1 at 9.5 m and Boring No. 3 at 14.5 m. The water level in a
piezometer 30 m south of Cavity I was at the 8.8-m depth. As indicated
by Figures 5 and 6, no water was present in the cavity excavations. At
the time of construction and during the investigations reported herein,
the water table at the site was at least 9 m deep. This is 1.7 m below
the depth of the deepest cavities.

13. Borehole nuclear logs were run in Boring No. 1 {Figure 10).
The logs were obtained solely for qualitative comparison purposes. The
natural gamma log (Figure 10a) generally reflects clay content of the
soil, with higher count denoting higher clay content. Gamma-~gamma logs
generally indicate formation bulk density, with count rate decreasing
with increasing density (Figure 10b). Finally, the neutron log (Fig-
ure 10c) indicates water content above the water table and porosity
below the water table, with higher count rates indicating smaller water
content values. A void behind the casing possibly is the cause of the
large excursion to the right in both the gamma-gamma and neutron logs
at 3-m depth. The transition that occurs over the depth range of 7.7
to 9 m coincides approximately with the water table indicated in a
nearby piezometer, although 7.7 m also coincides with the bottom of the
£i1ll material. The abrupt transition to lower values that occurs in the
gamma-gamma and neutron logs at 1k m is not easily explained in terms
of the boring logs and water content and density data. The change in

character of the material at 15 m indicated on the boring logs does not

seem sufficient to explain the geophysical log response.
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PART III: SEISMIC INVESTIGATIONS

General

1L, Seismic studies conducted at the Cavity Test Site consisted
of surface compression- (P-) wave refraction surveys, crosshole shear-
(s-) wave surveys, shallow seismic reflection surveys, "Meissner wave-
front" surveys, and a sonar investigation. The seismic refraction
method is adequately documented in many sources, and standard field
procedures were followed at the site (Headquarters, Department of the
Army 1978). Field, data reduction, and interpretive procedures for the
crosshole method are described by Ballard (1976) and Butler, Skogland,
and Landers (1978). The Meissner wave~front technique, field procedures,
and interpretive procedures are described by Meissner (1961), U. S. Army
Engineer Division, Missouri River (1971), and Franklin (1977). All

tests were conducted with air-filled cavities.

Results of Surface Seismic Refraction Surveys

15. The surface refraction surveys were conducted in the vicinity
of Cavity Sites I and II, with the majority of the reversed-profile
lines over and near Cavity Site I (see Figure 11). Time-distance plots
for each of the profile lines are presented in Figures 12-19. There are
apparently three velocity zones at the site: the fill material with a
P-wave velocity of about 270 m/sec, the undisturbed material down to
about 5.5 m with a P-wave velocity of about 340 m/sec, and the undis-
turbed material below about 5.5 m with a P-wave velocity of about
1390 m/sec. The nature of the irregular refractor located from 4.8
to 6.0 m in depth is uncertain, since the water table is considerably
deeper.

16. Detection of cavities by the conventional refraction method
relies on detecting time discrepancies caused by the seismic waves
passing through or around the void. The P-wave velocity in air is about

305 m/sec. Due to the relative closeness of the fill material velocity

10
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and upper undisturbed material velocity to the velocity in air, it is
unlikely that a delay could be detected. In fact, if the low fill
velocity extends to the depth of the cavity, the waves would preferen-
tially pass through the air-filled cavity. Figure 20 shows a section
view of Site I along refraction line A. The refractor interface for
line A is at approximately 5.9 m; and if it is assumed that the inter-
face is continuous across the fill region, it is seen that the refracted
paths would at best graze the top of the cavity. The refracted paths
to the geophone positions are all drawn at 612c , and none of the rays
even pass through the cavity when projected downward. Since the P-wave
velocity in the fill in the immediate vicinity of the cavity is not
known, the true ray paths in the fill-cavity region cannot be depicted
(although in any event the undisturbed-fill velocity contrast will be
small). However, with the assumption of a continuous interface across
the fill region, it is seen that the delays should be greatest for
geophones 10, 11, and 12 in one profile direction and for geophones 6,
7, and 8 in the reverse direction (see Figure 20) for reasons that have
nothing to do with the presence of the cavity. The delay times are, in
fact, due to the excavation. The time-distance data in Figure 12 are
entirely consistent with this model, and the data can be explained solely
in terms of the lower fill-material velocity. Line B, depicted in Fig-
ure 21, involves a yet more difficult geometry, but again the time-
distance data (Figure 13) cannot be directly interpreted to show the
presence of the cavity, and the delays are seen from Figure 21 to be

primarily due to the geometry of the backfill zone.

Results of Crosshole Seismic Surveys

17. Crosshole S-wave surveys were conducted near Cavity Site I.
Figure 7 shows the borehole layout. With borehole 1 containing the
source, tests were conducted between boreholes 1 and 2 and boreholes 1
and 3. A section view between boreholes 1 and 3 is shown in Figure 22.
Originally, 11 source positions and 11 receiver positions were planned,

requiring 121 separate test records. Unfortunately, this complete test

11
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program has not been completed. A complete set of opposed source-

receiver records was obtained, e.g., Sll to R3l’ S12

vhere S and R refer to source and receiver, respectively, the first

to R32, etc.,

digit of the subscript refers to the borehole number, and the second
digit of the subscript refers to the position within the borehole. With
the source at position 812, records were also obtained for receiver
stations R32 to R38' The shear-wave velocity profile for Cavity Site I,
interpreted from the opposed source-receiver records, is shown in Figure
22 also. This profile represents mean values from records obtained
using both an impulsive and a vibrator source at each depth.

18. Three concepts guided the original crosshole survey planning
and the manner in which the recores were examined: (a) for the opposed
source-receiver records, there may be differences in arrival times
and/or character of the signal for tests above the cavity, in line with
the cavity, and below the cavity; (b) for the source in a fixed posi-
tion and with the complete suite of receiver positions, after correction
for source radiation pattern and direct path distance, the peak ampli-
tudes observed at the receiver positions should exhibit a pattern charac-
teristic of the cylindrical-diffractor; (c) since the air-soil interface
of the cavity should have a reflection coefficient of unity (with 180-deg
phase shift), for cases where the reflected travel time is sufficiently
long compared to the direct travel time for resolution on the records,
it should be possible to observe reflections from the cavity. Figure 23
presents opposed source-receiver records for six depths (see Figure 22
for borehole-cavity geometry). All records were obtained using a nominal
vibrator frequency of 100 Hz (varied from 100 to 108 Hz). The increased
travel time and diminished amplitude of the record at T.0-m depth are
conspicuous {depth to center of cavity = 6.7 m). The only other ob-
vious change in wave form is the signature distortion of the record at
7.8 m. These initial results with the opposed source-receiver

configuration are encouraging.

19. The tests with fixed source and varying receiver positions

were not completed to a sufficient extent to allow identification of

12
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cavity diffraction patterns. However, with the source fixed at posi-
| tion 812 (1.52-m depth) and varying receiver positions from R32 down-
ward, the travel time of direct and reflected S-waves are sufficiently
different to allow identification of the reflected event (SS). The
eritical parameter affecting diffraction and reflection (from a local-

ized reflector) is the cavity diameter to wavelength ratio D/A . For

a nominal velocity of 180 m/sec and a cavity diameter D = 1.22 m ,
D/A values for varying source frequencies are presented in the fol-

lowing tabulation:

£, Mz Ay m D/A_
70 2.57 0.47
90 2.00 0.61
E 110 1.6k 0.75
5 130 1.38 0.88
150 1.20 1.02
170 1.06 1.15
190 0.95 1.29

210 0.86 1.42 '

230 0.78 1.56 :
250 0.72 1.69
500 0.36 3.38

The key concept is that the wavelength in the medium must be of the
order or less than the effective diameter of the localized structure or

"see" (i.e., be diffracted or reflected by) the struc-

the wave will not
ture. Thus, for the present case, this requires D/A > 1.0 or f >

150 Hz. For P-waves, it has been observed experimentally that no ob-
servable diffraction effects are noted for D/A < 0.2 and that in the
presence of noise, detection would be improbable for D/A < 0.7 (Dresen
1973). Similar results are anticipated for S-waves; and if this is so,
then the tabulation above indicates that observation of the SS event is
most likely on records for which f > 150 Hz . Unfortunately, these
concepts were not adequately appreciated when the crosshole surveys

were conducted. Thus, the tests were noi conducted with the specific

goal of observing reflections.

13
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20. It is possible, knowing the site S-wave velocity profile
(Figure 22), for one to calculate approximately when the S-wave reflected
from the cavity (SS event) should occur on a record. The results of

such calculations are given in the following tabulation:

Source Depth Receiver Depth Direct Arrival Reflected Arrival
m m Time, msec Time, msec
1.52 (512) 1.52 (R32) 38.1 58-63~69
3.05 (R33) 38.0 51-56-61
L.5T (Ry),) 38.8 47-50-56
6.09 (R35) 43.5 45-46-63
7.62 (R37) 48.3 L6-LT-55
3.05 (813) 3.05 (R33) 33.7 L6-L46-54

The direct arrival times are calculated using mean travel path veloci-
ties. The three times for the reflected events are obtained by using

the maximum, mean, and minimum velocities along the probable travel path
and rounding to the nearest millisecond. It is apparent that discrimina~
tion of the SS event from the direct arrival for receiver positiocns below
R3)+ would be improbable. Examination of the higher frequency vibrator
test records and also the impulsive source records revealed a few pos-
sible reflected events. Figures 24a and b (for S12 to R32) at 220 and
260 Hz, respectively, both have events at times consistent with being

SS events. Figure 2ke, at a lower frequency (120 Hz), shows no re-
flected events. Figure 25a (for 812 to R33), using an impulsive source,
shows the rather speculative identification of several events; however,
lack of predictable source wave form precludes positive event identifi-
cation in this case. Figures 25b and c at lower frequencies do not show
identifiable SS events. Thus, the use of reflected S-events from cross-
hole records cannot be adequately evaluated from the present results,
although the use of a controlled, high-frequency S-wave source looks

very promising.

Shallow Seismic Reflection Survey

21, A shallow seismic reflection survey was conducted over Cavity

1k




Site I (Kronig 1977). A l2-geophone array and a 50-Hz, low-cut filter
were used to attenuate high-~amplitude, low-frequency surface waves. The
wavelength of the interfering surface waves from the hammer-impact source
was determined to be 2.5 m; thus, geophones in the array were placed
0.23 m apart.

22. Figure 26 illustrates the survey plan. It was intended that
a five-fold common depth point (CDP) stack (Sheriff 197k) be conducted
at each station. If conducted properly (including corrections for
statics and normal move-out), reflected signals should grow in ampli-
tude with each stack while noise should diminish. Thus ten single,
common depth point records would result from the plan shown in Figure 26.
This should not be confused with a CDP traverse in which the common
depth point itself varies along a profile line.

23. The survey as actually conducted, however, was not a true CDP
stack. As shown in Figure 27, the geophone array remained fixed while
the impact station varied, i.e., the CDP actually changes during the
stack. Mooney (1976) refers to this procedure as "pseudo~CDP," since
it depends on the planarity and continuity of the subsurface reflector
for success. Thus, for a localized structure, the "pseudo-CDP" stack
is not strictly valid. However, since the horizontal variation of
reflection points (from a hypothetical horizontal reflector) is 0.6 m
for the geometry in Figure 27 (less than half the cavity diameter), it
is still possible that enhancement will occur during stacking due to
the duration of the reflected pulse.

2L. Considering the P-wave velocities from the refraction surveys,
the cavity-reflection event should occur at 30 to 40 msec (record time).
Figures 28 and 29 show records from Stations 1 and 2 (Figure 26).%* Each
record (from the top down) is the sum of itself plus the preceding
records. Thus, the bottom records in Figures 28 and 29 are the sum or
stack of records from five impact stations (see Figure 27). The vertical

dashed line is drawn at 35 msec {(mean value for the expected arrival

* Records from the remainder of the stations are contained in
Appendix A.
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time of the cavity reflection event) for both Stations 1 and 2. In-
deed, enhancement of a trough occurs at 35 msec. This trough could
represent the cavity-reflection event. There are peaks and troughs

on these as well as the other records from the survey that show enhance-
ment during stacking and that could represent reflections from inter-

faces as defined by the refraction survey (Kronig 1977).

Results of Wave-Front Surveys

25. Wave-front surveys using the Meissner technique (Meissner
1961) were conducted at Cavity Site I. Figure 30 illustrates the geom-
etry for an east-west survey across the cavity, and Figure 31 presents
the results in the form of an arrival time contour plot. The contour
lines represent lines of equal travel time of the wave front, and the
grid represents the hypothetical reciprocal positions to which measured
first arrival times are assigned. There is no obvious perturbation of
the contours indicative of the cavity.

26. Another wave-front survey was conducted in a north-south
direction using a borehole west of Cavity Site I. This survey line
passed over undisturbed material. Figure 32 presents the results.
Accepting this contour map ac standard or typical of the site, an
anomaly contour map (Figure 33) is produced when the arrival times in
Figure 32 are subtracted from those in Figure 31. Comparing this
anomaly map with maps produced by analytical model studies involving
cavities and grikes, Franklin (1977) demonstrated that the anomaly due
to a cavity of this size would not be evident. However, an 8-msec
anomaly would be produced by the backfilled trench. Thus, again, any
anomaly due to the cavity would be indistinguishable from the anomaly

due to the trench (as in the refraction surveys).

Sonar Investigation

27. In an attempt to detect the cavities with higher frequency

seismic (acoustic) waves, a sonar survey was conducted at the Cavity
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Test Facility (Unterberger 1977). The system, called SONAR II, uses

a single transducer array* as source and receiver., The output is a
pulse of 2k-kHz waves with 0.25 msec duration. The test geometry and
procedure is essentially equivalent to vertical seismic reflection
profiling. Surveys were conducted over Cavity Sites I and III. Be-
cause of the uncertain nature of the P-wave velocity variation in the
fill material, it is difficult to predict the time at which a reflected
signal should be observed. Thus, it is preferable to attempt to bound
the expected arrival time (due to uncertainty in the true velocity pro-

file above the cavity) as in the folléwing tabulation:

Reflection Time

Assumed Velocity Structure msec
270 m/sec-~-0-5.95 m+ (apparent fill velocity) Li,1
340 m/sec--0-5.95 m (apparent undisturbed profile) 35.0
270 m/sec--0-5 m (nominal P-wave refraction
profile) 38.5
1390 m/sec~-5-5.95 m
300 m/sec--0-5 m (profile used by Unterberger 1977) 34.6

1500 m/sec—-5-5.95 m

t 0.15 m graded off surface prior to tests.

Thus, events occurring between 34 and 4k msec could be reflections
from the cavity.

28. Figure 3ka is a sonar record from directly over the cavity
at Site I. The record is a photograph of an oscilloscope screen on
which the transducer output voltage is displayed as a function of time.
There are at least five signals present from 34 to 44 msec. The indi-
cated signal at 35.5 msec is the best candidate for the cavity reflec-
tion (Unterberger 1977). However, it is not necessarily prominent with

respect to the rest of the events present. It is interesting that the

* Twenty-one lead titanate zirconate transducers (2.5 cm diam, 2.5 cm
long) arranged in a "circular" array. The array is coupled to the
soil via a castor oil medium.
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peaks between 25 and 45 msec are roughly equally spaced; this could be
an indication or secondary "layering" resulting from the backfilling
process. Figure 34b is a sonar record from directly over the cavity at
Site III (2.9 m to top of cavity). In nominal 300 m/sec material, the
reflection is expected at 19.3 msec; and, indeed, there is a low ampli-
tude signal at 19.3 msec. These results are encouraging but are cer-

tainly not dramatic demonstrations of cavity detection.

Summary of Seismic Investigations

29. The following statements summarize the results of the seismic
investigations:

a. Surface refraction surveys. Time delays were observed for

lines over Cavity Site I that could be attributed to the
backfill material. No effect was observed that could be
interpreted as directly due to the cavity.

b. Crosshole surveys. Diminished amplitude and slightly
increased travel time were observed for the crosshole
geometry in which the cavity was directly between source
and receiver. Some success was achieved in identifying
cavity-reflection events on crosshole records from a
high-frequency controlled S-wave source.

c. Seismic reflection survey. A possible cavity-reflection
event was observed using enhancement techniques to stack
records obtained using "pseudo-CDP" field procedures.

d. Wave-front surveys. A wave-front anomaly plot, obtained
from wave-front surveys over and near Cavity Site I,
showed a significant anomaly due to the backfilled region,
but no specific indication of the cavity.

e. Sonar investigation. Sonar records from vertical probing
over Cavity Sites I and III showed reflections at times
consistent with the cavity depths, but also showed numerous
other events of equal or larger amplitude from unknown
sources.

18
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PART IV: RESISTIVITY SURVEYS

Surface Resistivity Methods

30. Surface resistivity surveys¥® using the Modified Bristow or
Bristow-Bates technique, Wenner profiling, Schlumberger sounding, and
dipole-dipole methods were conducted over Cavity Sites T and III. The
resistivity surveys were aligned in a direction normal to the long axis
of the cavities (except for two dipole-dipole surveys parallel to the
long axis).

Bristow-Bates technique

31. The Bristow-Bates technique (Bates 1973) uses essentially a
pole~-dipole geometry. The first Bristow-Bates survey at Cavity Site IIT
was conducted using a potential electrode spacing (PP) of 10 ft (Fig-
ure 35). The Gish-Rooney resistivity instrument was used with copper-

clad steel stakes as the electrodes. A current sink (C.) was placed at

about 500 ft from the Cl current electrode. The maximui length of line
that could be run was 150 ft because of the presence of steel and fabric
test strips on both sides of the facility. Segments for the first sur-
vey were 100 ft long; i.e., resistivity measurements were made at nine
positions at 10-ft spacings. Current electrode Cl was moved 50 ft along
the line to achieve the necessary overlap of measurements (see Fig-

ure 36). Field data for the first survey are shown in Plates B1-B3.¥**¥
Electrode spacings were measured using nonconducting measuring tape,

and resistance data were converted to apparent resistivities (pa , see
Figure 35) and plotted in ohm-centimetres versus electrode pair distance
from the Cl electrode (see Appendix B). Interpretations were based on
deviation of resistivity values from a baseline curve, Peaks, or anoma-
lously high values, are interpreted as resistive zones within the "shell"

of earth measured between the potential electrodes. Anomalously low

* Mixed U. S. customary and metric units are used in this Part due
to the inconvenience and awkwardness of converting field data and
survey line references.

** TField data for the Bristow-Bates surveys are contained in
Appendix B (Plates B1-B32).

19




z

values are interpreted as conductive zones. The buried cavities sur-
veyed are air-filled and should be represented by anomalously high
values. Study of the curves obtained in the initial survey (Plates Bl-
B3) indicated that more data points were needed to establish the baseline
for the curve, which would permit better delineation of highs and lows.
Subsequent surveys were therefore run with segments consisting of 18
points (PP = 5 ft) instead of the previous nine. In a situation of
homogeneous, isotropic earth, the baseline should be a vertical line

(resistivity versus distance of potential electrode array from C.). The

thick loess section in which the test cavities are buried shouldlapproxi-
mate this situation, except for the excavated and backfilled regions.

It was not known initially how this disturbed zone would affect measure-
ments, if at all. Subsequent surveys run at smaller PP spacings showed
that the effect of the disturbed zone was substantial, as discussed
below.

32. An interpretation of the data collected in the first survey
is given in Figure 36. No more than two arc interceptions result for
either high or low anomalies, except for the apparent three-arc
intersections at a depth of about 60 ft. The three-arc intersection
is considerably below the cavities and is presumed to be a false indi-
cation caused by near-surface anomalies, as discussed later (para-
graphs 36 and 37). It is desired to have at least three interceptions
for a reliable interpretation (Bates 1973). Failure of the first survey
to locate the cavities was attributed to (a) failure to establish a
sufficient baseline from which to select anomalies, (b) use of potential
electrode spacings that were too large, considering the diameter of the
target cavities, and (c) the effect of the disturbed zone, which may
mask the existence of cavity-related highs and lows.

33. The second survey at Cavity Site III was modified based on
results of the first survey and was run on the same line, using a 5-ft
PP spacing and segments of 18 points (100-ft segments with the Cl elec-
trode moved 50 ft for each segment). The 5-ft spacing resulted in a
much smoother, better defined baseline (Plates B4-B8) from which pos-

sible anomalies were picked and plotted for the interpretation. The

20




interpretation (Figure 37) did not locate the known cavities, although a
point of intersection of three high ancomaly arcs occurred at a depth of
about 47 ft, 8 ft west of the cavity axis. There is no subsurface in-
formation available to indicate that the arc intersections represent an
actual anomaly, and for reasons explained in paragraphs 36 and 37, the
apparent anomaly is presumed to be a false indication caused by near-
surface resistivity variations.

34. What is striking about the data of the second survey is the
abrupt step from one baseline resistivity value to another as shown in
Plates B5 and B6. Plate B5 shows the segment run from the 100-ft
position to the 200-ft position and indicates that the measuring poten-
tial electrodes cross from a zone of relatively high resistivity (about
7000 ohm-cm or 230 ohm-ft) to a zone of low resistivity (about 3000 ohm-
cm or 98 ohm-ft) at the 125-ft position and back to a high zone at the
155-ft position. Plate B6, which shows the segment run from the 150-ft
position to the 50-ft position (opposite in direction to that of
Plate B5), indicates the measuring electrodes crossed from a zone of
relatively low resistivity (about 300 ohm-cm) to a high zone at the
125-ft position. The 155- and 125-ft positions plot symmetrically about
the axis of the cavity burial area and coincide with the approximate
boundaries df the excavated or disturbed zone of material. The dis-
turbed and remolded loess of the excavated zone exhibits lower resis-
tivity. The potential electrode measuring circuit is strongly influenced
by resistivities of surface materials, and it is apparent that, in this
case, the measuring electrodes are detecting the presence of the dis-
turbed zone of material and that the resistivity of the disturbed zone
differs from that of the undisturbed material. Referring to Plates Bl-
B3, it is now apparent that most of the ancmalies recognized in the
first survey were actually an expression of the disturbed zone. This
illustrates a problem that variable overburden materials present in the

use of the Bristow-Bates technique. Failure of the second survey to

locate the cavities was attributed to (a) potential electrode spacing

that was too large, (b) masking effects of the disturbed zone, and
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{c) lack of sensitivity (lack of power) of the instrument at the elec-

trode spacings used.

— - —

35. A Keck IC-69 resistivity meter was used to run a third
Bristow-Bates survey at Cavity Site III with a 2-ft potential electrode
spacing. The survey line was the same as that used for the other (5-
and 10-ft electrode spacing) surveys. The third survey was run in
40-ft segments with the current electrode at the 110-, 130-, 150-, and
170-ft positions, respectively, along the survey line [see Figure 38). ]
There were no arc intersections that indicated locations of the cavities
in this survey. The data do indicate, however, the locaticn of the
east and west boundaries of the disturbed or excavated zone. By noting
the gradual increase or decrease of the baseline values of the curves as
| the potential electrodes are advanced 2 ft at a time, it can be concluded

: that the excavation boundary is sloping toward the center line of the

test area. A vertical boundary between high and low resistivity material
would be expected to produce a sharp break in the curve regardless of
electrode spacing. A sloping boundary, however, creates a situation of
a gradual decrease in the measured apparent resistivity values as more
and more lower resistivity material near the potential electrodes comes
into the section. Plate Bll illustrates this situation very well. Note
the gradual rise from one baseline resistivity value to a higher value

from the 152-ft position to the 160-ft position.

36. Two distinct high anomalies were indicated in the third survey

by intersections of fairly strong arcs 2 ft east and west of the center

line, at the ground surface. These positions are expressed on the sur- i
face by a slightly raised ground surface, indicating possibly a less

compacted znone of material within 2 ft either side of the center line.

It is not known why the boundaries of this zone are expressed specifi-

cally by high anomalies, but the symmetry and position of the anocmalies

with respect to the center line cannot be overlooked. The several sur-

face anomalies exhibited in the final survey emphasize again that the

measuring circuit (potential electrode pair) is influenced strongly, if

not dominated, by surface and near-surface phemonena at small potential

"

described

electrode spacinrms, rather than by material within the "bowls
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by the arcs. A possible exception is the anomaly indicated in Fig-
ure 38 at about the 13h-ft position, lying approximately 12 ft below

the surface. It 1s indicated by a three-arc intersection--one arc

corresponding to a very weak anomaly, and the other two are part of
[ the intersections of the surface anomalies. One is led to conclude
that the apparent buried anomaly is a false indication.

37. Bristow-Bates surveys were also run over Cavity Site I, using

10-, 5-, and 2-ft potential electrode spacings. Field data for the

surveys are presented in Plates B16-B32. Interpretations of the data
are shown in profile in Figures 39-41. Results were very similar to

L those obtained over the 2-ft cavity. Only surface-expressed anomalies
were detected. There were no subsurface arc intersections that indi-
cate the presence of the cavity. Figure 40 indicates the presence of a
resistivity high directly above the cavity. The anomaly corresponds to
the position of two small-diameter plastic access pipes leading to the
large buried cylinder. As with the other surveys, the disturbed or

] excavation zone again was well depicted as a zone of low resistivity

\ (Figures 39-k1).

Wenner profiling

38. Constant spacing (a-spacing) Wenner profiling surveys (Fig-

ure L2) were conducted over Cavity Sites I and III. Results of the

survey over Cavity Site III are presented in Figure 43 for 5- and
10-ft a-spacings. The horizontal scale in Figure 43 is referenced to

the same survey line used in the Bristow-Bates surveys over the site

(Figure 36). These surveys were conducted primarily to verify the low
resistivity zone and its correspondence with the backfilled region. The
interpreted low velocity zone (Van Nostrand and Cook 1966) in Figure 43
corresponds quite well with the known excavation limits and the results
of the Bristow-Bates surveys.

39. Results of the survey over Cavity Site I using 10-, 25-, and
50-ft a-spacings are shown in Figure 4Lk, It is doubtful if either of
the two smaller a-spacing curves represents sampling tc sufficient depths

to include the cavity. At such a wide a-spacing, however, a greater
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volume of soil is averaged into the resistivity measurement, so that

any effect of the cavity is decreased. The relatively diminutive value
of the resistivity low attributed to the disturbed soil zone on the
50-ft a-spacing profile is another result of too great a volume of soil
being measured., All three curves indicate the presence of the disturbed
soil zone by the "trough" of low resistivity near the centers of the
profiles, similar to profiles for Site III (Figure L43).

Schlumberger sounding

40. An east-west Schlumberger sounding was performed over Cavity

‘ Site I with the potential electrode pair centered over the cavity. L-
1 spacings (see Figure 45) ranged from 5 to 130 ft. The results (Fig-
‘ ure 46) can be interpreted in two ways: (a) a four-layer structure of
high, low, high, low apparent resistivity (12), where pl = 93 ohm-ft
(28 ohm-m) , o, = 60 ohm-ft (18 ohw-m) , Py = LT0 ohm-ft (143 ohm-m) ,
40 ohm-ft (12 ohm-m) , and layer 1 thickness El =L ft (1.2 m) ,
E, 6 ft (1.8 m) , and E3

= 11 ft (3.4 m) or (b) more probably, a
structure of approximately constant low resistivity in the disturbed

Py

material over the cavity (with a very thin surface layer of higher
resistivity material) and as a two-layer structure of high then low
apparent resistivity in the undisturbed material outside the excavated

zone. In this interpretation, it is assumed that the hump in the sound-

ing curve in the middle L-spacing range is caused by current flow en-

E countering the higher apparent resistivity material of the undisturbed
zone. When the current electrodes are placed farther apart, the current
penetrates to the water table. This produces the final drop in apparent
resistivity at large L-spacings.

Dipole-dipole surveys

] 41, Dipole-dipole surveys (see Al'pin et al. 1966) were run from
east to west across Cavity Sites I, II, and III and from north to south
across Cavity Sites I and III (Kronig 1977). The electrode configura-
tion and method of surveying are illustrated in Figures 47 and L8,
Depth of penetration with this form of dipole-dipole surveying is esti-
mated to be 0.7 to 0.9 times the distance n x r (see Figure 47). The

apparent resistivity data are tabulated to permit easy contouring of a
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cross section through the site along the survey line (Figures 49-53)}.
The vertical spacing in the tabulation is constant but arbitrary, and
horizontally the data points are placed at the midpoints of the array.

42, Traversing east to west across the three cavities, the transi-
tion from undisturbed to disturbed material can be detected, with vary-
ing degrees of clarity, by the lower apparent resistivity values in the
disturbed material. The central region of the surveys produces gen-
erally low resistivity readings compared to the outer, undisturbed
regions. In traversing north to south over Cavities I and III, while
there are sporadic high resistivity readings, the campled material is
generally of low resistivity, as expected, since in the north-south
direction, the surveys cross undisturbed material only at the end.

43, The east-west survey across Cavity III (Figure 52) clearly
reveals the sharp contrast between the high (undisturbed) and low
(disturbed backfill) resistivity zones. The presence of the backfill
anomaly can be seen in all the east-west surveys. There are high
apparent resistivity values within the central low resistivity zone
that possibly indicate the cavity's location. However, Cavity I, the
largest cavity, indicated no discernible resistivity high (Figure 50).

L4, The interpreted shape of the disturbed-undisturbed interface,
distinguished by the transition from low to high apparent resistivity
values, is generally distorted, and in Figure 51, the slope is in the
opposite direction from the actual slope. The anomalous high apparent
resistivity values in the disturbed zone (see Figures 49 and 51), which
possibly indicate the influence of the cavity, do not line up directly
over the cavity. This offset can be explained by recognizing that data
points are plotted, as a compromise, at the midpoint of the dipoles,
even though the anomalous sampled material may be located to either side
of the midpoint. Thus, this method shows some promise of detecting the
presence of cavities and geologic boundaries, but must always be expected

to be imprecise on the actual location of the anomalies.
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Subsurtace Resistivity Methods

45, An electrical resistivity device capable of conducting various
types of single-hole and crosshole resistivity surveys has been designed
at WES and prototype-tested at the Cavity Test Facility. The power sup-
ply is a 12-volt high-capacity battery, which is commutated at about
10 Hz, with dead times each half-cycle to prevent polarization effects
at the electrodes. The 10-Hz square wave is centered at about 0 volts.
The downhole probes consist of a 0.0k-m-diam (d) by 0.15-m-long (L)
solder-wrapped electrodes separated on either end of 0.05-m insulating
sections from 0.76-m-long guard sections. A 0.15-m-long and O0.QL-m-
diam solder-wrapped electrode serves as a surface or mud-pit electrode.
The measuring system is a Wheatstone bridge circuit using a microammeter
as a null indicator and a precision rotary potentiometer to indicate
the required null resistances. GSeven different systems are possible:
(a) single-hole, single-electrode resistivity; (b) single-hole,
dirferential resistivity; (c) single-hole, focused resistivity; (d)
crosshole, single-electrode resistivity; (e) uncontrolled guard, cross-
hole resistivity; (f) controlled Kelvin guard, crosshole resistivity;
and (g) crosshole pgtential measurement (see Keller and Frischknecht
1966).

46. Although many problems were encountered with the instrumenta-
tion and field procedures, sufficient data have been collected using the
single-hole point resistivity and crosshole point resistivity systems
to be worthy of reporting.* A borehole 7.6 m to the east and a borehole
7.6 m to the west of Cavity I were used for the field tests. Several
single-hole, single—electrode'resistivity runs were made in each bore-
hole, and then crosshole, single~electrode resistivity measurements were
made. The conversions from measured resistances (AV/I) to resistivi-
ties was made by the equation 0, = KG(AV/I) , wWhere KG = 2,73
L/[ln(EL/d)] = 2,03 (see Keller and Frischknecht 1966). The results

¥ Personal communication, J. B. Warriner, EG&RMD, WES, August 1978.

26

e SRR




R

PR - A A

e TR TR

cal

are presented in Figure 54, where the dashed curve is the crosshole
resistivity curve, the solid curve is the average of all single-hole
measurements, and the horizontal bars represent the scatter in single-
hole values at each depth. The crosshatched regions represent depths
for which the crosshole curve significantly deviates from the average
single-hole curve. At first, it seems that an anomaly occurs at about
the right depth to be due to the cavity; however, since both the
single-hole data and the crosshole data exhibit similar patterns and
since the sign of the anomaly is wrong to represent an insulator, the
anomaly centered at 7.0 m is probably not due to the cavity. It is
difficult to formulate a consistent explanation for either anomaly. It
is possible that the relatively more compacted fill around the cavity
might contribute to the difference in the two curves and produce the
lower anomaly. The anomaly at 4.3 m is possibly related to the observed
refracting horizon in seismic surveys, although in general the refracting
horizon was somewhat deeper. It should be noted that single-hole and
crosshole data contain anomalies that are only about +10 percent of the
mean value. The other resistivity procedures produced more substantial
anomalies, although clearly the geometries with respect to the fill zone

are very different.

Summary of Resistivity Surveys

L7. Five electrical survey techniques were attempted: (a) Bristow-
Bates (pole-dipole), (b) Wenner profiling, (¢) Schlumberger sounding,
(d) dipole-dipole, and (e) crosshole resistivity. The first four tech-
niques consistently produced anomalies that could be related to the
backfill zone. The Bristow-Bates and dipole-dipole techniques did
reveal some anomalies that were possibly cavity related; however, neither
technique showed these latter anomalies consistently from one survey to
another.

48. The data obtained indicate the following:

a. Interpretation of the Bristow-Bates technique can be com-
plicated by large lateral variations in resistivity of
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near-surface material; for these situations, it is
imperative to increase data redundancy by decreasing
current station spacing along the survey line.

More data points should be obtained along survey lines
for the Wenner profiling technique; for a = 40 to 50 ft
{appropriate for Cavity Site I), data points should be
spaced 10 ft or less along the survey line.

The dipole-dipole technique, while sensitive to horizontal
variations in resistivity, does not accurately delineate
interfaces via the approximate interpretation method used
in this study.

28

e ek




PART V: RADAR SURVEYS

General

49, Surveys were conducted at the Cavity Test Facility with three
different radar systems: (a) a 4.2-GHz continuous wave-frequency
modulated (CW-FM) radar system; (b) a 100-MHz pulse radar system; and
(c) a 300-MHz pulse radar system. These surveys were 'part of two con~
tract investigations (Unterberger 1977, Benson 1977) and were con-

sidered to be feasibility studies.

CW-FM Radar Probing Results

50. The CW-FM radar system, called ECHO II, is essentially a modi-
fied airborne radar altimeter (Unterberger 1977). Since it is a CW sys-
tem, it does not suffer from minimum range problems as do pulse radars.
Also, since the system operates at a microwave frequency (4.2 GHz), the
wavelength in the loess is of the order of 4 cm; hence, resolution
should be excellent for objects the size of the cavities. The output
frequency is modulated about the base frequency (4.2 GHz) at 120 Hz in a
linear ramp (triangular mcdulation). The return signal is mixed with
the transmitted signal and fed to a frequency analyzer. Beat frequen-
cies other than 120 Hz or its harmonics indicate return signals from
subsurface structures. Since the beat fregquency and the speed of elec-
tromagnetic waves in the soil are known, the depth to the object causing
the return signal can be calculated, at least in principle.

51. An east-west profile line of 21 stations, 1.52 m apart, was
surveyed at Cavity Site I. All 21 stations were probed, and with only
small variations, all spectral analysis records resembled Figure 55.

No signals were observed other than harmonics of the 120-Hz frequency.
In an attempt to bound the probing range of the system, a test was con-
ducted probing horizontally through 1.5 m of surface loess material.
Again, no return signal was detected. The failure of the system to

achieve even small penetration depths can best be attributed to extremely
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high attenuation in most soils at microwave frequencies. As indicated
in Unterberger (1977), a lower frequency system (about 30 MHz) would
have greater depth of penetration than the ECHO II system. However,
because the wavelength would be about 6 m, small cavities could not be

located.

Pulse Radar Profiling Results

52. A pulse radar system was utilized to obtain "continuocus”
real-time subsurface profiles over Cavity Sites I and III (Benson
1977). The system utilized two different antennae: (a) a monostatic®
nonshielded antenna with a center frequency of about 100 MHz and
10-nsec pulse width, and (b) a bistatic** shielded antenna with a
center frequency of 300 MHz and 3-nsec pulse width. The system was
utilized in a "towed traverse" mode, with a speed of about 0.73 ft/sec
(1.2 mph). All traverses were made from east to west. A total of 38
different trials were made over Cavities I and III.

53. Figure 56 is a profile (time section) made by moving the

radar from east to west over Cavity Site III (3.05 m to top of upper

cavity). The ideal cavity-disturbed zone appearance on the time section

should be as shown in Figure 57, which shows a radar profile over two

pipes buried in V-shaped trenches in limestone; however, such a struc-

ture is not observed in the time section of Figure 56. Several enhance-

ment techniques were attempted with no success, such as varying the

electric field vector polarization relative to the cavity axis, changing

antennae, filling the cavity with water, and using various data process-

ing schemes. While some of the records did reveal some features that
can be seen to repeat on more than one scan, they do not reveal the
unambiguous type of record indicative of the presence of a cavity seen

in Figure 57.

* A single antenna used for both transmitting and receiving.
¥* GSeparate antennae used for transmitting snd receiving.
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54. In an effort to determine the depth of penetration of the

radar system, traverses were made over several shallow culverts and
pipes at WES. Figures 58 and 59 show time sections for traverses over
0.305-m-diam culverts at 0.305-m and 0.6l-m depths, respectively. Both
profiles show clearly the classical pattern produced by a '"point source"
target, and in Figure 58, the disturbance due to the trenching is also
clearly seen. However, traverses over a 0.76-m-diam culvert at 1.83-m
depth showed no evidence of the culvert. Horizontal probing through
0.305~m- and 0.6l-m-thick loess blocks revealed the loess-air interface
by use of the 300-MHz system, althongh the reflected signals were weak.

55. Possible explanations cited in Benson (1977) for the inability
to detect cavities (or pipes) at depths greater than about 1 m in the
loess are as follows:

a. The material may be anisotropic and act as a depolarizer
on the wave. (This is unlikely, however, as the material
appears quite homogeneous and is composed of a fine-
grained crystalline material whose particle size is very
small compared to the radar's wavelength.)

|o

The cavity (pipe) acts as a depolarizer. (This may be
possible at Site III as the wavelength is comparable to
that of the cavity. Within the possible resonance region,
polarization may occur.)

¢. Another material property commonly neglected when dis-
cussing radar is that of magnetic susceptibility, which is
usually considered to be zero. (The loess at the WES site
does have a small magnetic susceptibility of 50 to 60 cgs
units. While this value is relatively small, the mas-~
siveness of the loess deposits may influence radar
performance. )

d. Penetration may be limited due to a high attenuation
(signal absorption) of the loess backfill material.

Summary of Radar Surveys

56. Successful geological application of radar appears to be very
site-dependent, but even under optimum conditions, it will be limited to
shallow depths of penetration for typical sites of interest. Cook (1975)

reports 18 rock types (in their probable natural moisture content state)
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for which probing depths should be in excess of 30 m at frequencies of
25 to 100 MHz; fortunately, limestone is one of these rocks. However,
for soils (particularly those with high clay contents and/or moisture
contents), the probing depths are commonly very small (<1 m) as demon-
strated in the present study. Thus, for sites with more than a very
thin soil cover, radar will likely be of limited usefulness. For sites
with exposed rock or dry, sandy soil covers, the potential for success-

ful use of radar should be much better.
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PART VI: SUMMARY AND RECOMMENDATIONS

57. This report documents the construction of a Cavity Test
Facility at WES and presents the results of attempts to detect the
cavities using various geophysical methods. It is important to empha-
size that the group of geophysical methods studied is not exhaustive.
There are several very promising methods that were not used: micro-
gravimetric techniques, high-resolution seismic reflection profiling,
borehole gravimetry, and magnetic methods (for clay-filled cavities
or cavities in high clay-content soils). Also, it is not claimed that
the methods that were used at the Cavity Test Facility are necessarily
the most appropriate nor that the field procedures and interpretations
represent best efforts. Based upon results of data obtained at the WES
test site, it became apparent that some of the methods used showed
potential as tools for cavity detection provided that refinements in
data acquisition and/or interpretation were incorporated. In cther
words, in retrospect there is much that could be done differently or
additionally if the program were to continue in the future.

58. In general, the results of the attempts to detect the cavities
at WES are mostly of a negative nature. Seismic refraction methods
appear to be a poor prospect for detecting cavities of the sizes present
at the test facility. Some success was achieved in identifying reflec-
“tions from the largest of the cavities (Site I) using the crosshole or
surface reflection‘methods. Also, it appears technically promising to

detect cavities between boreholes by seismic travel time and amplitude

anomalies., Surface resistivity methods were generally unsuccessful at
detecting the cavities. The Bristow-Bates and dipole-dipole techniques
each provided indications of anomalies that possibly correlated to
cavities in one or two cases. Subsurfacé probing radar could not
detect the cavities, probably because of its insufficient depth of
penetration.

59. It cannot be overemphasized that the results presented in this

report are site-specific; i.e., they hold specifically only for the WES
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Cavity Test Facility or cavities in a loesslike material. In fuct, the

negative resuits emphasize detficiencies of the test facility itselr.

The Cavity Test Facility fails to fulfill the program objectives in
three important ways: (a) as a result of the construction methods, the
medium around the cavities is not homogeneous because the backfill zone
has different seismic and electrical properties from the undisturbed
media; (b) the loess material in the backfill and top 6 m of the undis-
turbed material has P-wave velocities close to that of air and hence the
cavities do not represent a significant velocity anomaly; and (c)
although the cavity sizes and depths may be realistic for simulating
field conditions and as goals for geophysical capability, they repre-
sent conditions too extreme for the evaluation and development of geo-
physical techniques for cavity detection. Indeed, most of the methods
succeeded in detecting and delineating the zone of backfilled material
around the cavities, and if any effect due to the cavities were present
in the data, it was indistinguishable from the anomaly due to the back-
filled material. Most of the geophysical methods used succeeded in
delineating the backfilled zone, and since the differences between the
disturbed and undisturbed materials were actually quite small, this is
encouraging. However, the physical size of this zone was large and
this may be one of the reasons why it was detectable.

60. It is recommended that cavity detection research continue, but
that an alternate test site be found. The present WES Cavity Test
Facility will still be of value in the future, but should only be used
subsequent to the development and evaluation phase of research, i.e.,
only after the geophysical techniques have been thoroughly tested under
less extreme conditions and interpretation procedures are well under-
stood. The possibility of a natural Cavity Test Site should be
explored. A thoroughly mapped cave system in limestone or dolomite with
a satisfactory range of sizes and depths of cavities would be ideal.

Also, a viable possibility is to drill horizontal holes into the vertical

face of a rock quarry. All such sites are likely to be remote from WES,

more costly to investigate, and have a lesser amount of "ground truth"

information available than for a man-made site.

3L




61. Geophysical methods that should be investigated in the
cavity detection research program are microgravimetric techniques
including gravity-gradient measurements, high-resolution seismic k
reflection profiling, expanding spread seismic fan shooting (Sheriff
1974), investigation of cavity diffraction signatures with the cross— 1
hole geometry, and continued study of subsurface probing radar to

determine the lithology dependence of its applicability.
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Figure 37. Bristow-Bates survey over Cavity Site III, using
5-ft potential electrode spacing (see Plates BL-B8)
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Figure 41. Bristow-Bates survey over Cavity Site I, using
2-ft potential electrode spacing (Plates B27-B32)
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Figure 42. Wenner profiling array
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a. INITIAL STATION
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b, - APPARENT RESISTIVITY
Av - POTENTIAL DIFFERENCE (AV = V(P1) - V(Pz))
I - CURRENT

c. GENERAL CASE AND EQUATION 1
FOR APPARENT RESISTIVITY

Figure U47. Dipole-dipole :onfiguration: a. 3initial
station; b. n =2 ; ¢. general case and equation
for apparent resistivity




(TT uOT3®B3S J9pUM J93udd A3TAB) ‘W 26°T
= Surtoeds uolze3g ‘parsadaa sseooad ayjz pur ‘¢ uolm
—B]g 07 POACW ST T) gz UOTIFBIE OF Pasow ST (D usyj
*}, sTenba (fg 2an8T4) N TTIun JuIpead UoBD JOJ UOTIBIS
SUO DBAOU BJB S8POJFOITS TBIJusjod oMl ayL " 3B &d
? pue ‘¢ 98 g °z 38 €0 ‘T 2@ I) Uzt USYEY ST BUTPBSI
TBI3TUI) °Tg 03 T suoljels arodrp-sTodiq ‘gh SINITJ

T {14 004)

wWSsote '—

¥4 [174 61l 81 L1 91 St vi €l Zi 33 ol 6 8 L 9 S 4 € 14 L
[ [ [ ] o o [ [ J ® [ ] o [ ] ® [ J [ ] [ ] [ J [ ] o [ ] [ ] [ ]
o A & & & &

—~— VT, v, z, by z, 'y

(LSV3 HO H1NOS) (1S3M HO HLHON)




Test Geometry
(N-S Profiles)
N stations lsFT s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2 S6 90 62 42 Lo 17 22 24 20 22 ®'26 17 21 ¢ 27 12 20
3 70 69 33 43 25 17 18 19 18 25 30 15 20 13 15 20 18
£ & 57 36 36 30 25 19 15 30 19 @.16 19 14 23 17 3%
a
g s 31 38 27 30 30 1% 16 22 23 17 30 17 25 26 33
6 35 28 25 35 30 18 19 21 16 22 3 26 30 39
? 29 26 29 34 29 19 24 18 18 13 30 48
* ANOMALOUS RESISTIVITY VALUES
Figure 49. North-south dipole-dipole survey over Cavity Site I;
apparent resistivity in ohm-metres; cavity center at Station 11
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Figure 50. West-east dipole-dipole survey over Cavity Site I;

apparent resistivity in ohm-metres. (Dashed lines represent

inferred disturbed/undisturbed boundary. Cavity center at
Station 11)
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Figure 51. North-south dipole-dipole survey over Cavity Site III;
apparent resistivity in ohm-metres; cavity center at Station 11
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Figure 52. West-east dipole-dipole survey over Cavity Site III;

apparent resistivity in ohm-metres. (Circled anomalous values

indicate possible effect due to cavity. Dashed lines represent

inferred disturbed/undisturbed boundary. Cavity center at
Station 11)
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Figure 53. East-west dipole-dipole survey over Cavity Site IV,

apparent resistivity in ohm-metres. (Dashed lines represent

inferred disturbed/undisturbed boundary. Cavity center at
Station 11)
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Figure 55. ECHO II recording probing into subsurface at a station
directly over Cavity Site I; no reflected signals observed; only
harmonics of 120-Hz triangular wave evident
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Figure 57. An optimum radar record of pipes in V-shaped trenches.
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APPENDIX A: SEISMIC REFLECTION RECORDS
{
B 1. Each of the following figures (Al to A8) presents from top to

bottom the seismograms obtained from one, two, three, four, and five

; summed impacts (as illustrated in Figure 26) for reflection Stations 3

through 10 (Figure 25). The dashed line is at 35 msec. Sweep time is
100 msec.
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APPENDIX B
BRISTOW-BATES SURVEYS--DATA SHEETS
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In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Butler, Dwain K
Evaluation of geophysical methods for cavity detection at the

t WES Cavity Test Facility / by Dwain K. Butler, William L.
. ¢ Murphy. Vicksburg, Miss. : U. S. Waterways Experiment Sta-
f tion ; Springfield, Va. : available from National Technical

Information Service, 1980.
37, {47}, 17 p., [16] leaves of plates : ill. ; 27 cm.
. (Technical report - U. S. Army Engineer Waterways Experiment
Station ; GL-80-4)
Prepared for Office, Chief of Engineers, U. S. Army,
Washington, D. C., under CWIS Work Unit 31150. ,
References: p. 36-37.

.= xesiincig

1. Cavities (Underground). 2. Cavity detection. 3. Geophysi-
' cal exploration. 4. Resistivity surveys. 5. Seismic surveys.
6. Subsurface exploration. I. Murphy, William L., joint
author. 1II. United States. Army. Corps of Engineers.

I11I. Series: United States. Waterways Experiment Station,
Vicksburg, Miss. Technical report ; GL-80-4.

TA7.W34 no.GL-80-4

-—

- —-—

- ——

!
?
i
!




